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Numerical simulation of fluid flow and heat 
transfer in a thin liquid film over a rotating disk 
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Abstract-The results of a numerical simulation of the flow field and associated heat transfer coefficient 
are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The 
computation has been performed for different flow rates and rotational velocities using a three-dimensional 
boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on 
flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its 
location. The computed film height agreed well with existing experimental measurements. The flow was 
dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at 
larger radii and adjacent to the disk. The rotation enhanced the heat transfer coefficient by a significant 

amount. 

INTRODUCTION 

THE FREE surface flow of a thin liquid film adjacent to 
a rotating surface is an interesting fluid mechanics 
problem since a number of surface and body forces 
act on the system simultaneously to shape the flow 
structure, The most dominant of these forces are: 
the friction exerted by the disk ; the cent~fugal and 
Coriolis forces due to rotation of the disk ; and the 
inertia from the incoming fluid stream. This kind of 
flow is also quite commonly encountered in engin- 
eering processes, e.g. evaporation or condensation on 
a turbine blade and spin coating of metals. The pri- 
mary motivation of this study, however, is to under- 
stand the fluid flow and heat transfer in a proposed 
absorber unit for a space-based vapor absorption 
refrigeration system. This kind of system is expected 
to be very useful in a micro-gravity environment 
where the centrifugal body force can be an effective 
driving mechanism for thinning the film to promote 
the absorption of the refrigerant vapor into the 
absorbent. 

The fluid motion adjacent to a rotating surface in 
an infinite quiescent fluid medium is one of the fun- 
damental problems in viscous fluid flow. Von Karman 
[l] presented an exact solution of the Navier-Stokes 
equation for this case by estimating the thickness of 
the boundary layer from a basic mass and momentum 
balance and developing a similarity variable to trans- 
form the partial differential equations for the con- 
servation of mass and momentum to a set of ordinary 
differential equations. An integral method was used 
to solve the reduced equations. Later Sparrow and 
Gregg [Z] extended the ideas of Von Karman to study 
the flow field and heat and mass transfer adjacent to 
a rotating disk in the presence of blowing or suction 
at the wall. The reduced transport equations were 
integrated numerically across the thickness of the 

boundary layer to determine radial, axial and tan- 
gential velocities and temperature and concentration 
distributions in dimensionless form. Results were pre- 
sented for a range of positive and negative blowing 
rates as well as for the case of no blowing or suction. 

In the present study, however, we are not concerned 
with boundary layer flow in an infinite medium of 
fluid, but the flow of a thin film adjacent to a plate. 
The boundary layer, however, develops within this 
thin liquid film and may extend all the way across the 
film. An analytical solution for the flow of a thin film 
adjacent to a rotating disk was presented by Rauscher 
et aE. 91. An asymptotic expansion technique was 
used where the radial spread of fluid was perturbed 
to determine the effects of convection, Coriolis accel- 
eration, radial diffusion, surface curvature and surface 
tension. These higher-order effects were discussed on 
a physical basis. Their solution was valid for laminar 
flow with small Rossby number. 

Espig and Hoyle f4] experimentally studied the sur- 
face waves in a thin liquid layer on a rotating disk. To 
correlate the experimental data, Nusselt’s equation 
for film thickness on an inclined plate was modified 
to develop an expression for average film thickness, 
taking into account the effects of rotation. The thick- 
ness was found to be a function of volumetric tlow 
rate, fluid viscosity and angular velocity of the disk. 
Needham and Merkin [5] studied the development 
of non-linear waves on the surface of a horizontally 
rotating thin liquid film. Using an asymptotic expan- 
sion technique, they studied the flow of a film much 
smaller in thickness than the distance from the axis of 
rotation. This distance, in turn, was smaller compared 
to the total radius of the disk in order to eliminate 
any end effects. It was found that the thickness of 
the film changed rapidly near the entrance due to 
spreading, while further away from the inlet, the film 
height was mainly determined by the centrifugal force 

1441 



1442 M. M. RAHMA~ sod A. F~GHKI 

/ 

N~~ENCLATURE 

non-dimensional velocity in the radial 
direction, equation (12) 
gravitational acceleration. - 9.8 I j 
[m s ‘] 

non-dimensional velocity in angular 
direction. equation (13) 
convective heat transfer coefficient. 

y,$; (7’, -- T,,) for heating : 
q,,/‘( T, - T,,,,) for evaporation 
[Wm ‘K ‘1 
unit vector in the angular direction 

unit vector in the direction normal to the 
plate 

cell index in the radial direction 
unit vector in the z-direction 
thermal conductivity [W III-’ K ‘] 

coordinate normal to the free surface. or 
number of grid cells in the radial 
direction 

Nusselt number, id; K 
static pressure [Pa] 
ambient pressure [Pa] 
Prandtl number 
heat flux [W m ‘1 
volumetric flow rate at the entrance 
[m’s_-‘] 

local rate of volume loss at a cell next 
to free surface [m’s ‘1 
radial coordinate [m] 
time [s] 
tel~per~~ture [K] 

I/ velocity in angular direction [m s ‘] 
I‘ velocity in the direction normal to the 

plate [m s ‘1 
V velocity vector [m s ‘1 
11’ velocity in the z-direction fm s I] 

B/,5, average radial velocity at entrance [m s ‘] 
\- coordinate in angular direction [m] 

.I’ coordinate normal to the plate [m] 
coordinate in the radial flow; direction 
(Fig. I) [ml. 

Greek symbols 

^* thermal diffusivity [m’s ‘] or rclaxatic 
factor 

d film thickness [m] 

i non-dimensional coordinate 

perpendicular to the plate. 
equation ( I 1) 

1’ kincm~ltic viscosity [m’s ‘1 

0 density [kg m ‘1 
5 shear stress [N m ‘1 
(I) angular velocity [rad s ‘1. 

Subscripts 
b mixed mean (bulk) 
in entrance 
out exit 
I component in radial direction 
sat saturation 

w solid wall 

fi, component in the angular direction. 

jn 

and viscous stress. An expression for film thickness 
was presented, which appears to be the same as that 
developed by Espig and Hoyle [4]. 

The analysis of evaporation of a thin liquid film 
from a rotating surface was presented by Butuzov and 
Rifert [6]. A closed-form solution of the film thickness 
was derived by neglecting inertia and making a basic 
balance of the centrifugal and frictional forces acting 
on the film. Bornside cf al. [7] also studied evaporation 

from the free surface of a thin liquid film with ref- 
erence to spin coating processes. A one-dimensional 

flow model was dcvcloped that accounted for vari- 
ations in concentration, viscosity and diffusivity 
across the thickness of the spin coated film. The flow 
of the liquid was governed by a balance between the 
centrifugal driving force and the viscous resisting 
force. The equations of the flow and transport were 
solved using the Galerkin finite element method. 

In all the above-mentioned studies, the thin film 
was primarily driven by centrifugal force. The inertia 
of the incoming fluid was either negligible or assumed 
to be so. In a space-based absorption refrigeration 
system, however, the film is expected to be introduced 

at the center of the disk with a significant amount 01 
inertia to have a continuous flow of absorbent on the 
disk. This kind of system, where liquid is introduced 
at the center of the disk from a pressurized container 
and driven both by inertial and centrifugal forces, was 
studied recently by Thomas er ul. [8. 91. 

Thomas rf 01. f8] presented the numerical solution 
of the one-dimensional radial flow of a thin liquid 
film adjacent to a stationary and rotating disk. The 
continuity and momentum equations were integrated 
across the thickness of the film by assuming a flat 
velocity profile to develop a single equation for film 
velocity. The resistance to the flow due to wall shear 
stress was expressed in terms of an empirical friction 
coefficient which was estimated from the radial flow 
velocity. The thickness of the film was predicted by 
solving the equation for film velocity as a transient 
problem using the MacCormack predictor-corrector 

method. 
Thomas er nl. [9] presented experimental measure- 

ments of radially spreading ffow of a thin film adjacent 
to a horizontal disk. A non-obtrusive capacitance 
technique was used for the measurement of the fihn 
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height distribution. A photographic study was done 
to understand the nature of the surface waves. Tests 
were performed both for stationary and rotating disks 
at flow rates ranging from 7 to 15 1.p.m. The rate 
of rotation varied between 0 and 300 r.p.m. Their 
experiments predicted the presence of a hydraulic 
jump when the disk was stationary. The jump moved 
downstream with an increase of the flow rate and 
rotational velocity. Waves were found to be present on 
the free surface at all flow rate; and rates of rotation. 

The present study is undertaken to develop a com- 
putational procedure for solving the governing trans- 
port equations in their complete three-dimensional 
form for the flow of a thin liquid film adjacent to a 
rotating disk. This methodology eliminated the need 
for assuming a friction coefficient as was done in the 
one-dimensional model developed by Thomas et al. 
[8]. Furthermore, an attempt is also made to improve 
the simple one-dimensional solution procedure. All 
computed results are compared with the experimental 
measurements of Thomas et al. [9]. The details of the 
three-dimensional flow field and distribution of the 
heat transfer coefficient are discussed. 

MATHEMATICAL MODEL 

The curvilinear boundary-fitted coordinate system 
used for the three-dimensional numerical computa- 
tion is shown in Fig. 1. The local coordinates are 
directed along lines connecting the centers of the 
adjacent grid cells. The x-axis is directed in the azi- 
muthal direction, the y-axis perpendicular to the plate 
and the z-axis along the radial flow direction. The 
velocity components in these three directions are U, u 
and w, respectively. Due to the axisymmetric nature 
of the flow and vertical entrance and exit sections, 
u is directed parallel to the plate and v is directed 
perpendicular to the plate. However, w changes its 
direction along the plate depending on the slope of 

the free surface. The height of the free surface from 
the solid wall is denoted by 6, which varies with radial 
location. 

For incompressible flow with constant fluid prop- 
erties, the equations for the conservation of mass, 
momentum, and energy are given by 

v-v=0 (1) 

DV 
-_= 
Dt 

- ;v~+vV’V+g 

DT 
- = aV2T. 
Dt 

The terms due to viscous dissipation and pressure 
work in the energy equation are neglected, as is typical 
for any low speed flow. Since the flow is symmetric 
about the axis of rotation, there was no variation of 
velocity or temperature in the angular direction, i.e. 
N/ax = 0 and dT/ax = 0. At the free surface, both 
tangential and normal stress components are zero. 
The vanishing tangential stress condition is rep- 
resented by the zero velocity gradient on the free 
surface. The normal stress condition on the free sur- 
face leads to equations balancing the pressure and 
other stresses, including surface tension. Scaling these 
equations, one can show that, for a thin film flow 
where Weber and Reynolds numbers are large, all 
other stress terms are negligible compared to pressure, 
leading to p = p0 on the free surface. The kinematic 
condition on the free surface relates the variation of 
film height to the velocity components. At the 
entrance plane, the velocity is assumed to be radial 
with a parabolic profile. At the exit plane, the flow 
is assumed to be fully developed with a hydrostatic 
pressure profile. In general, the velocity and tem- 
perature information at the exit is unknown, but needs 
to be specified for an elliptic problem. Since the flow 
becomes entirely supercritical for the rotational 

FIG. 1. Schematic of the flow of a thin liquid film adjacent to a rotating disk. 
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speeds considered here, the solution is not very sen- 
sitive to the exit boundary condition, and vanishing 
gradients for velocity and temperature are appro- 
priate. The boundary conditions for the flow con- 

sidered here are then given by 

at J’ = 0 : 
V = ((tri. T = T,, (4) 

at _r = 6: 

iW 
- = 0, P = PO, 

d6 1’ 

an 
d; = ,,‘, 

(lT 
C 

?n 
0, heating 

t T = T,;,,, evaporation 

T= T,, 16) 
at z = r,,,, : 

l?V 

l?Z 
= 0, p = p” +pg(6 -p’), 

?T 

i?Z 
= 0. 

Here n is the direction normal to the free surface. 
The quantities T,, T,,,, T,,, W,, and u are assumed 

to be constant. Two different thermal conditions are 
considered on the free surface : simple heating without 
evaporation and evaporation. For the first case, the 
free surface is assumed to be adiabatic in nature. In 
the second case, the free surface is isothermal at its 
equilibrium saturation temperature. 71,,. In the 
present investigation it is also assumed that, in the 
case of evaporation, the fluid enters at its equilibrium 
saturation temperature, i.e. T,, = T,,,. The Nusselt 
number is defined in terms of film thickness since that 
is the most significant length scale for this problem. 

COMPUTATIONAL PROCEDURE 

Three-dimensional method 

The governing transport equations, along with 
the boundary conditions described in the previous 
section, were solved numerically using a boundary- 
fitted curvilinear coordinate system. The irregular free 

surface was taken as one of the boundaries of the 
computational domain. The solution domain was pie- 
shaped, extending from rir, to r,,, in the radial direction 
and over a small angle in the angular direction in 
order to prevent both distortion of body-fitted coor- 
dinates at Large radii and clustering of grids at smaller 
radii. The grid cells were generated by an algebraic 
interpolation between the boundaries of the domain. 
In general, the cell faces were non-orthogonal to each 
other. As shown in Fig. I, the local coordinates were 
defined along lines connecting the centers of the adjac- 
ent grid cells. The x-axis was taken in the azimuthal 

direction, they-axis perpendicular to the plate and the 
z-axis in the radial flow direction. The velocity 
resolutes in these three directions are U. I’. and w, 

respectively. In the finite difference formulation, the 
co-variant components, i.e. components parallel to 
the cell faces, were used to represent the velocity and 
force vectors. 

The finite difference equations were derived by 
using the principle of conservation of mass, momen- 
tum and energy at each cell. The primary variables 
were preserved in the formulation instead of non- 
dimensionalizing. The quantities were stored in a stag- 
gered fashion where they made more physical sense 
for cell conservation. For each cell. the velocity com- 

ponents were stored at downstream boundaries. 
whereas all pressures and temperatures were stored at 
the cell center. The mass flux across a ccl1 boundary 

was computed exactly from the scalar product of the 
velocity vector and the vector representing the area of 
the cell face. The convection contributions to a cell 
from its neighbors were calculated exactly by taking 
into account the curvature of a cell face and its 
non-orthogonal orientation. In the calculation of 
diffusion, however, the cell boundaries were approxi- 
mated to be locally orthogonal. The hybrid difference 
scheme demonstrated by Patankar IlO] was used to 
preserve the relative ~ontribLltion of convection and 
diffusion to a cell from its neighbor in terms of cell 
Peclct number. This is a common practice in the com- 

putation of convective flows. 
The distribution of cells in the computational 

domain was determined from a series of tests with 
different numbers of cells in the X. 1‘. and r directions. 
Due to the axisymmetri~ nature of the fiow, only five 
cells with an angular extent of 2.3” ccl1 were found to 
be adequate in that direction. This provided a totai 
angle of 1 I .5 for the entire computational domain. 
Test runs with 3.45” cell and 2.3 cell yielded heat 

transfer coefhcients within 0.001 ‘XI. Similarly, runs 

with two cells and five cells in the angular direction 
resulted in heat transfer cocfficicnts within 0.0005?%. 
Similar tests for the other two directions showed that 
50 cells in the radial direction and 30 cells across 
the thickness of the film resulted in grid-independent 
solutions. Therefore, the computational domain was 
divided into 5 x 30 x 50 cells by simple algebraic 

interpolation to generate a uniformly distributed grid 

structure. 
The finite difference equations were solved by using 

the SIMPLEST algorithm as presented by Spalding 
[ 111, which is an iterative solution procedure where 
the computation was started by guessing a pressure 
field. Then the momentum equations were solved to 
determine the velocity components. The pressure was 
updated using the continuity equation. Even though 
the continuity equation does not conmin any pressure. 
it can be easily transformed to a pressure correction 
equation as shown by Patdnkar [IO]. The iterations 
were continued until the sum of the residuals for ail 
computational cells dropped below 10 6 for each 



Fluid flow and heat transfer in a thin liquid film 1445 

equation. Since the flow was not coupled to the ther- 
mal transport for the problem considered here, the 
temperature field was solved once the film height dis- 
tribution was completely ascertained. 

Since the geometry of the free surface was depen- 
dent on the flow parameters, but needed to be specified 
to generate the grid structure for the three-dimen- 
sional computation, an iterative procedure had to be 
used to ascertain the location of the free surface. The 
free surface boundary was assumed to be a permeable 
wall through which fluid particles were allowed to 
enter or leave the computational domain. Since the 
ambient pressure was prescribed, an outflow took 
place when the static pressure of the fluid adjacent to 
the free surface was higher than the ambient pressure 
and vice versa. The penetration of fluid through 
the free surface essentially violated the kinematic 
condition on the surface, which was arrived at by 
adjusting the surface height distribution in success- 
ive iterations. The scheme worked as follows : 

(1) A free surface height distribution was pre- 
scribed (based on the one-dimensional solution of 
Thomas et al. [8] or any improved method). 

(2) The flow field was solved completely for that 
height distribution. 

(3) The amount of penetration of the fluid through 
the surface was calculated at all locations along the 
flow : 

(Q,ossh = QL, - Q,z. 

(4) The new free surface height was determined 
from the old height and the rate of penetration : 

where M. is the relaxation factor. 
(5) Iterations were continued until the rate of pen- 

etration became negligible. 

For a given surface height distribution, the devi- 
ation from the ideal zero penetration condition was 
estimated by the following measures. 

(a) Root-sum-square penetration 

= 
Qin 

(8 ) 
a 

(b) Absolute sum of penetration 

k;, I (Q,osshI 
= 

Qm . 

(c) Maximum error in flow rate 

@b) 

All these quantities were found to decrease almost 
monotonically with iterations. The final results pre- 
sented here had both absolute sum of penetration and 

maximum error in flow rate of less than 0.06 and root- 
sum-square penetration less than 0.02. A relaxation 
factor of CI = 1 (i.e. no relaxation) was found to be 
adequate in most computations. Since the flow field 
was not affected by thermal transport, the energy 
equation was solved only for the final free surface 
height distribution with no penetration through the 
surface. The above computational algorithm is termed 
as the porous wall method originally outlined by 
Rahman et al. [12]. Significant modifications of the 
method, however, have been made here to improve 
the iteration procedure as well as the error estimates. 
Moreover, this is the first time it has been applied to 
predict three-dimensional flow involving rotation. 

Improved one-dimensional method 
The one-dimensional computational procedure, 

developed by Thomas et al. [8], was also improved 
here by incorporating a better estimate of frictional 
resistance exerted by the solid wall on the flow. In the 
one-dimensional method, the governing equations for 
mass and momentum were integrated across the thick- 
ness of the film assuming a uniform velocity profile. 
In the original procedure of Thomas et al. [8], the 
flow was assumed to be strictly radial in nature with 
a superimposed solid-body rotation. The resistance to 
the flow due to friction was taken to be the resistance 
in the radial direction. In the azimuthal direction, the 
velocity remained constant across the thickness of the 
film with no resistance from the solid wall. In reality, 
however, the velocity is expected to change due to the 
finite viscosity of the fluid, so there will be frictional 
resistance from the wall in the azimuthal direction. 
To account for the frictional resistance due to the 
angular velocity, we may define the total shear stress 
as 

7, = J($ + 7:). (9) 

Here z, = cf(1/2pW2), where cf can be calculated by 
using the Blasius [13] solution or the parabolic solu- 
tion given by Rahman et al. [14]. Also, z+ can be 
estimated from the exact solution of laminar flow 
adjacent to a rotating disk in an infinite extent of fluid 
[I 51 : 

zg = 0.6prv”*w3/*. (10) 

Using Z, as the shear stress at the solid wall, the 
discretized equations of Thomas et al. [8] were refor- 
mulated and solved to give the film height distribution 
for any given flow rate and rate of rotation. 

RESULTS AND DISCUSSION 

The three-dimensional computational procedure 
discussed in the previous section was first tested 
against the limiting flow situations, where theoretical 
or experimental results are available. By setting the 
rotational speed to zero, the computed results repro- 
duced exactly the film height distribution and velocity 
field corresponding to two-dimensional thin film flow 
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Dimensionless distance from wall, < 

FIG. 2. Comparison of numerical results with similarity solution for fluid motion adjacent to a rotating 
disk in an infinite fluid medium. 

adjacent to a stationary disk, as presented by Rahman 
et al. [I 21. Another limiting case was the flow induced 
by a rotating disk in an otherwise stagnant infinite 
fluid medium. Analytical solutions for this case were 
developed by Von Karman [l] and later extended by 
Sparrow and Gregg [2]. In this system, the flow is 
limited to a thin boundary layer adjacent to the disk. 

The computed solution for this limiting case is pre- 
sented in Fig. 2, where it is compared with the ana- 
lytical results presented in ref. [2] for no blowing or 
suction at the wall. The non-dimensional distance, [, 
and velocity components G and Fare defined as 

(11) 

Both the radial and azimuthal velocity distributions 
across the thickness of the boundary layer are reason- 
ably matched. One major difference between the con- 
ventional boundary layer flow and the flow of a thin 
film is that the thickness of the film is finite and 
bounded by the free surface which interacts with the 

surrounding medium. 

The height of a thin film adjacent to a rotating disk 
was experimentally measured by Thomas et al. [9]. A 
horizontal disk 406.4 mm in diameter was used for 
the experiment where water at 20°C was introduced 
radially through a slot 0.267 mm in height at a radial 
location of 50.8 mm. The film height was measured 
along the radius by using a non-obtrusive capacitance 

probe frorn 76.2 mm to 195.6 mm. The measurements 
were not reported past 195.6 mm because part of the 
capacitance sensor was over the edge of the disk. 
Twenty sets of experimental data were taken covering 
flow rates of 7---l 5 1.p.m. and rotational speeds of 55- 
300 r.p.m. The flow was isothermal and no measure- 
ment of heat transfer was done in that experiment. In 
the present investigation, we used the flow and 
rotation conditions presented by Thomas er al. [9]. so 
that a relative comparison of the film height dis- 
tribution could be made. The specific cases chosen 
here are listed in Table 1. Prediction of film height 
and heat transfer coefficient could be done for all 
the experimental runs. However, to save the com- 
putational efforts, some specific cases were picked to 
cover the range of experiments in terms of flow rate 
and rate of rotation, as well as to understand the trend 
of the variation of the flow field and heat transfer 
coefhcient with flow rate and rotational speed. The 
table also lists the root-sum-square penetration, 
absolute sum of penetration and maximum error in 

Table 1. Flow and rotation rates in the present investigation 

Case No. 

1 
2 
3 
4 
5 
6 
7 
8 

Flow Rotational 
rate speed 

(1.p.m.) (r.p.m.) 

9 200 
15 200 

1 100 

I1 100 
15 300 
15 55 
7 300 

15 100 

Root square 
penetration 

0.0043 
0.0072 
0.0050 

0.01 IO 
0.0020 
0.0127 
0.0148 
0.0092 

Absolute 
sum of 

penetration 

0.0199 
0.0235 
0.0258 
0.0406 
0.0097 
0.0593 
0.0445 
0.0332 

Maximum 
error in 

flow rate 

0.0113 
0.0152 
0.0152 
0.02 18 
0.0076 
0.0540 
0.0100 
0.0224 
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FIG. 3. Comparison of numerical solution with experimental data for thin liquid film at a flow rate of 
9 1.p.m. and angular velocity of 200 r.p.m. 

flow rate corresponding to the three-dimensional film 
height distribution for each specific flow rate and rate 

of rotation. For computational runs involving heat 
transfer, the wall temperature is assumed to be 3O”C, 
whereas the entering fluid (water) is at 10°C. This 

gave a film temperature of 20°C for the evaluation of 
properties. 

The computed film height for a flow rate of 9 1.p.m. 
and rotational speed of 200 r.p.m. (case 1 in Table I) 
is shown in Fig. 3. The experimental data as well as 
the computed results using previous one-dimensional 
solution algorithms are also shown in the same figure. 
The three-dimensional solution predicted the trend 
of the experimental data, i.e. the film height first 
increased, attained a peak and then decreased further 
downstream. The increase of the film height near the 
entrance is due to the strong frictional resistance the 

flow encounters from the solid wall. However, as the 
radius increased, the centrifugal force increased in 
magnitude and overpowered the frictional resistance. 
Then the film height decreased due to the increase in 
flow velocity as well as radial spreading. The effect of 
radial spreading was more significant at smaller radii. 
At larger radii, the curvature decreased and radially 
spreading flow approached plane flow. The one- 
dimensional solution of Thomas et al. [8] shows a 
monotonic decrease of film height with radius, and 
the height is consistently underpredicted except very 
close to the exit. Thomas et al. [8] assumed a solid- 
body rotation condition with no variation of velocity 
across the thickness of the film. Moreover, friction 
was computed based on the radial velocity using an 
empirical correlation. Therefore, the centrifugal force 
was more and frictional force was less accounted for 
in the numerical formulation. Therefore, the trend 
seen here is quite expected. The modified one-dimen- 
sional solution presented here improved the pre- 
diction of film height at smaller radii, but failed to 
do so at large radii. Here both radial and azimuthal 
components of frictional forces were accounted for, 
but still keeping no velocity variation across the thick- 

ness of the film. It may be noticed that the present 
three-dimensional solution, unlike the one-dimen- 

sional methods, does not require any estimate of the 
friction coefficient. Figure 3 also shows a comparison 
with the analysis of Needham and Merkin [5]. Since 
the analysis presented an asymptotic solution valid 

for solid-body rotation, the analytical solution shows 
a monotonic decrease in film height and compared 
well with the computation of Thomas et al. [8], where 
similar assumptions were incorporated. In reality, 
however, viscous resistance at the wall slowed the film 

and resulted in a larger height distribution. Moreover, 
the asymptotic solution neglected the effects of inertia 
which were significant in the experiment and were 
adequately accounted for in the three-dimensional 
solution. The computed results for a rotational rate 
of 200 r.p.m. and flow rate of 15 1.p.m. (case 2 in 

Table 1) are shown in Fig. 4. Here, the present three- 
dimensional solution gives a very good agreement 
with the experimental data. The one-dimensional 

algorithm of Thomas et al. [8] consistently under- 
predicted the film height whereas the present one- 
dimensional algorithm improved it somewhat, par- 
ticularly near the entrance and exit. The analytical 
solution of Needham and Merkin [5] showed a large 
film height near the entrance that monotonically 
decreased downstream. Near the entrance, the flow 
was dominated by inertia, and therefore the analytical 
results of Needham and Merkin [5] were not valid in 
that region. 

The film height at a rotational rate of 100 r.p.m. for 

two different flow rates (cases 3 and 4 in Table 1) is 
shown in Figs. 5 and 6. At this rate of rotation, the 

one-dimensional solution procedure using the result- 
ant frictional resistance gave a reasonable overall 
agreement, whereas the procedure of Thomas et al. 
[8] still underpredicted the film height at most 
locations. The analytical solution, as before, over- 
predicted the film height at smaller radii and under- 
predicted it at larger radii. The present three-dimen- 
sional solution gave the best agreement with the exper- 
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FIG. 4. Comparison of numerical solution with experimental data for thin liquid film at a flow rate of 
15 1.p.m. and angular velocity of 200 r.p.m. 
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7 t.p.m. and angular velocity of 100 r.p.m. 
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11 1.p.m. and angular ’ velocity of 100 r.p.m. 

imental data even though it did not coincide with dition. At this boundary, the velocity was assumed to 

it. A small overestimate of the film height near the be parabolic in nature with a maximum on the free 

entrance may be due to the development of the vel- surface. This is the best condition one can impose for 

ocity profile from the given entrance boundary con- laminar flow, as confirmed from the distribution of 



Fluid flow and heat transfer in a thin liquid film 

0.15 
“-1. 

I I I I I I 
60 80 100 120 140 160 180 i 

Radial distance, mm 

FIG. 7. Comparison of numerical solution with experimental data for thin liquid film at a flow rate of 
15 1.p.m. and angular velocity of 300 r.p.m. 

velocity across the thickness of the film in an inter- 

mediate location of the flow. 
The distribution of the film height for 300 r.p.m. 

and flow rate of 15 1.p.m. (case 5 in Table 1) is shown in 
Fig. 7, where it is compared with the one-dimensional 
predictions of Thomas et al. [8], the experimental data 
of Thomas et al. [9] and the analysis of Needham and 
Merkin [5]. In this situation, the numerical solution 
underpredicted the experimental data in most regions. 
The one-dimensional algorithm of Thomas et al. [8] 
produced a film height distribution that was much 
smaller than the experimentally measured values. The 
present one-dimensional algorithm improved it 
further, whereas the present three-dimensional solu- 
tion compares best with the experimental data. The 
trend of the data that the film height first increased, 
attained a peak and then decreased downstream was 
captured only by the present three-dimensional 
numerical solution. The one-dimensional solutions 
for this case show a monotonic decrease of film height 
with radius. The analysis of Needham and Merkin [5] 
compared better with the computation of Thomas et 

al. [8] at a larger rate of rotation since the effects of 
inertia became smaller. The above comparisons (Figs. 
3-7) show that the present algorithm can be an effec- 
tive means for the prediction of the film height for a 
thin film flow adjacent to a rotating disk. The small 
deviations from the experimental values are within the 
uncertainties of experimental measurements and can 
also be attributed to unsteady surface waves as well 
as the surface tension effects that were not accounted 
for in the present steady-state numerical formulation, 
especially at the outer edge of the disk where the 
experimental data showed an increase in film height. 

The distributions of the velocity vectors at three 
locations across the film are shown in Figs. 8 and 9, 
respectively, for two limiting operating conditions : 
case 6 (55r.p.m., 15 1.p.m.) and case 7 (300 r.p.m., 7 
1.p.m.). In Fig. 8, at y/S = 0.82 the velocity was almost 
radial near the entrance and turned by a small angle 
as the flow moved downstream. Since the flow rate 
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FIG. 8. Velocity vectors for thin liquid film at a flow rate of 
15 1.p.m. and angular velocity of 55 r.p.m. 

was high compared to the rate of rotation, the flow 
near the free surface was dominated by the entrance 
condition. At y/6 = 0.15, which was near the solid 
wall, the velocity vectors were directed more in the 
angular direction, particularly at larger radii. Looking 
at the magnitude of the velocity vectors, the cen- 
trifugal force increased as the radius increased. At 
y/6 = 0.48, the velocity vectors turned at an angle 
that increased with radial distance. Also, the overall 
magnitude of the vectors decreased with radius due 
to the resistance exerted by the solid wall. At smaller 
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FIG. 9. Velocity vectors for thin liquid film at a flow rate oi’ 
7 1.p.m. and angular velocity of 300 r.p.m. 

radii, the velocity increased with distance from the 
wall since frictional resistance became smaller. At 
larger radii, however, an opposite trend was seen due 
to the stronger centrifugal force that accelerated Auid 
particles near the wall. The flow was dominated by 
inertia at smaller radii and at locations away from the 
waif, whereas the contribution of rotation became 
important at locations near the solid wall and in 

regions away from the center. From a plot of the 
velocity components in the radial and azimuthal direc- 
tions, it was found that the profile for w was approxi- 
mately parabolic in nature with a maximum at the 
free surface and zero at the wall. This corroborates 
corresponding observations for a stationary disk pre- 
sented by Rahman ef uE. [12]. The azimuthal com- 
ponent was maximum at the solid wall and gradually 
decreased nearer the free surface. The normal com- 
ponent of velocity was found to be small compared 
to either of these components. 

In Fig. 9, the flow was dominated by rotation in 
most regions except near the entrance when the 
rotational speed was 300 r.p.m. and the flow rate was 
7 1.p.m. At this condition, the inertia was overpowered 
by the high rotational velocity after traversing some 
distance. Looking at the magnitude, the resultant 
velocity increased with radius. At intermediate ftow 
rates and rates of rotation, the vector plots showed 
behavior within these two limits. The effect of the flow 

rate was found to increase the radial component of 
velocity, whereas rotation increased both radial and 

azimuthal components. The friction always counter- 
acted these velocities to arrive at an equilibrium con- 
dition. The fluid particles exited the disk at an angle 
with the radial direction that increased with the rate 
of rotation. 

A plot of Nusselt number for a flow rate of 15 I.p.n~. 
at two different rates of rotation is shown in Fig. 10 

(cases 5 and 8 in Table I). The plots correspond to 
two different thermal boundary conditions on the 
free surface; namely, simple heating without evapor- 
ation, when the free surface is approximately adiabatic 
in nature. and an evaporative fret surface when the 
surface is isothermal at the equilibrium saturation 

temperature. The thermal condition at the rotating 
disk surface is assumed to be R uniform temperature 
higher than the entering fluid temperature. The 
Nusselt number decreased rapidly near the entrance 
at all flow and heating conditions. This was due !o 
the development of the thermal boundary layer as tht 

fluid moved downstream. For both the cases of hcat- 
ing and evaporation. the Nusselt number for the case 
of 300 r.p.m. decreased monotonically all the way to 
the exit. whereas in the cast of 100 r.p.m., the Nussclr 
number first decreased, attained a minimum and then 
increased further downstream to approach an tip- 
proximately constant value near the exit. The Nussclt 

number for heating was consistently higher than the 
corresponding case of evaporation at all radial 
locations and all rates of rotation. This was also 
observed in connection with heat transfer to a IXiing 
liquid film presented by Seban and Faghri [lb]. The 
Nusselt number for 300 r.p.m. was higher than that 
for 100 r.p.m. in most regions of the disk except close 
to the exit. The slightly higher Nussclt number near 
the exit was due to a much larger film height than the 
corresponding case of300 r.p.m. An overall cnhance- 
ment of Nusselt number is obtained by increasing the 

rate of rotation. 
The Nusselt number here is defined in terms of local 

film thickness, which varies along the radius. The 
film thickness also decreased as the rotational velocity 
increased. To see the distribution of the heat transfer 
rate more clearly. the vaiues of the heat transfer 
coefficient tbr the same iIow rate and heating zon- 
ditions arc shown in Fig. 1 I. The heat tran!sfcr 
coetIicicnt for 300 r.p.m. was consistently higher than 
that for 100 r.p.m. at all radial locations. This is yuitc 
expected since the rate of rotation increased the ccn- 
trifugal force which accelerated and thinned the film. 
both of which contributed to the ellh~~flcernent of heat 
transfer. For the case of300 r.p.m. and simple heating, 
the heat transfer coefficient decrcascd near the cntrancc. 
attained a minimum and then increased f&thcr 
downstream. For the other casts shown here. the 
heat transfer coefficient approached an approximately 
constant value after a gradual decrease near the 
entrance. As the radius increased, the inertial force 
decreased and centrifugal force Increased. both of 
which were counteracted by frictional resistance at the 
solid wall. In the absence of rotation or any external 
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FIG. 10. Nusselt number distribution for thin liquid film at a flow rate of 15 1.p.m. 
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FIG. 11. Heat transfer coefficient for thin liquid film at a flow rate of 15 1.p.m. 

body force, the heat transfer coefficient gradually 
decreased downstream as seen in the studies by 
Rahman et al. [12] for radial flow at zero gravity. 
The rotation balanced out or even overcame the fric- 
tional resistance at larger rates of rotation, as seen in 
the vector plot for 300 r.p.m. (Fig. 9). Therefore, the 
convective heat transfer, which is intimately related 
to the fluid velocity, increased downstream once the 
centrifugal force became the dominant driving mech- 
anism. If a disk of larger radius was considered, we 
could possibly see a minimum followed by a gradual 
rise in the heat transfer coefficient for all cases. Also, 
the effects of rotation in the enhancement of the heat 
transfer coefficient were greater for the case of simple 
heating than the case of evaporation. 

Figure 12 shows the variation of Nusselt number 
with radial distance for a given rate of rotation at 
different flow rates. For the case of 15 l.p.m., the 
Nusselt number monotonically decreased from the 
entrance radius, but for the case of 7 l.p.m., it 
decreased gradually at smaller radii and approached 
a constant value further downstream. The behavior is 
the same for the cases of heating and evaporation. 
For the disk considered here, the Nusselt number for 

15 1.p.m. was higher than that for 7 1.p.m. at all radial 
locations. This is expected, particularly at smaller 
radial locations, since fluid velocity will be higher at 
larger flow rates. At large radii, however, when the 
effects of rotation become more important, a higher 
heat transfer coefficient may be attained by using a 
smaller flow rate due to greater thinning of the film. 
So, by controlling the disk radius, flow rate and rate 
of rotation, one may attain any desired requirement 
of heat transfer in this kind of flow system. 

CONCLUSIONS 

Numerically computed distributions of the film 
height, velocity vectors and heat transfer coefficient 
are presented for the free surface flow of a thin liquid 
film adjacent to a horizontal rotating disk. The flow 
was dominated by inertia at smaller radii and close to 
the free surface and dominated by rotation near the 
solid wall and at larger radii. The radial component 
of velocity had an approximately parabolic profile 
which was maximum at the free surface and zero at 
the solid wall. The angular component of velocity was 
maximum at the wall and gradually diminished across 
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Ftc;. 12. Nusselt number distribution for thin liquid film at a rotation rate of 300 r.p.m 

the thickness of the film. The local fluid velocity 
increased with an increase in both the volumetric flow 
rate and angular velocity. The fluid particles exit the 
disk at an angle with radius that increased with the 
rate of rotation. At the flow rates and rates of rotation 
considered here, the film height first increased, 
attained a peak and then decreased further down- 
stream. The increment of the film height is attributed 

to frictional resistance, whereas the reduction of the 
film height at larger radii is due to the spreading of the 
film as the flow area increases as well as the increase of 
the centrifugal force with radius. The predicted height 

using the present three-dimensional computational 
method agreed well with experimental measurements. 

The rate of heat transfer is enhanced by a significant 
amount by increasing the rate of rotation for both 
cases of simple heating with no evaporation and 
evaporation at the free surface. 
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SIMULATION NUMERIQUE DE L’ECOULEMENT ET DU TRANSFERT THERMIQUE 
DANS UN FILM LIQUIDE MINCE SUR UN DISQUE TOURNANT 

R&mu&--Les r&hats dune simulation num&ique de l’ecoulement et du coefficient de convection associ& 

sont present&s pour un mince ftlm liquide adjacent a un disque tournant horizontal. Le calcul est conduit 

pour differentes vitesses de rotation et plusieurs debits en utilisant un systeme de coordonnees tri- 

dimensionnel adapt& Puisque la geometric de la surface libre est inconnue et depend du debit, de la vitesse 
de rotation et des autres parametres, on utilise une procedure iterative. La hauteur calculee du film s’accorde 
bien avec les don&es experimentales connues. L’ecoulement est domine par I’inertie pres de l’entree et vers 
la surface libre et il est domine par le force centrifuge pour les grands rayons et pr& du disque. La rotation 

augmente le coefficient de transfert dune fagon t&s significative. 

NUMERISCHE SIMULATION VON STRdMUNG UND WARMEUBERGANG IN EINEM 
DUNNEN FLUSSIGKEITSFILM AUF EINER ROTIERENDEN SCHEIBE 

Z~ammenf~n~F~r die Str~mung eines diinnen ~~ssigke~ts~lms auf einer rotierenden Scheibe mit 
freier Oberfliiche werden die Ergebnisse einer numerischen Simulation des Striimungsfelds und der damit 
verbundenen Wiirmeiibergangskoefenten prlsentiert. Die Berechnungen wurden fiir unterschiedliche 
Massenstriime und Winkelgeschwindigkeiten miter Verwendung eines dreidimensionalen Koordinaten- 
systems mit Ursprung an der Grenzfliiche ausgefiihrt. Die Geometrie der freien Obertllche ist zunkhst 
unbekannt, da sie vom Massenstrom, der Winkelgeschwindigkeit und anderen Parametern abhlngt. Die 
Position der GrenztXche muD folglich iterativ ermittelt werden. Die berechnete FiimhShe stimmt sehr gut 
mit vorhandenen MeBwerten tiberein. Die Str6mung wird im Bereich des Zulaufs und nahe der freien 
Oberllache und der Tragheit bestimmt, wohingegen die Zentrifugalkraft fiir griiBere Radien und fur Stellen 
direkt an der Scheibe liberwiegt. Der Wiirmeiibergangskoeffizient wird durch die Rotation wesentlich 

erhiiht. 

q~~EHHOE MG~~~POBAH~E TEYEHHtl ~~~K~~ PI TEH~O~EPEH~A IIPH 
OBTEKAHHM BPAIIJAIQIqEI’OCII J@iCKA TOHKOH XKR.2IKOH IIJIEHKOH 

AHIIOTeIrIIN-l@e.ACTaKAeHM pe3yAbTaTbr wcAerrHor0 MoAennposaHnn norm Teriemin n K03+&innewra 

Temroneperioca B cnysae TeKeHrrn co cBo6oA~oii noBepxnocTbro T0n~0ii XWAKO~~ meHKu, npriAeraromeZi 

K rOpn3OHTaAbHOMy ITpaWUOmeMyCK A&ICKY. PaCWTbr AAK pa3AnvHrJx paCXOAOB H CKOpOCTeii IIpanIeHnK 

npOBOAnJniCb C nClTOAb30BaHHeM TpeXMepHOii CIlCTeMbl KOOpAEHaT, CBK3aHHOii C fpamineii. nOCKOZbKY 

EOMeTpSiSI CBO6OAHO~ uOBepXHOCTn HeII3BeCTHa R 3aBnCET OT paCXOAa, CKOjPOCTH B~menHK II ApyrHX 

napaMeTpo4 AAI 0ppeAeAeenx ee pacnonoxeHfiK npnMenxncs MeToA nTepanmr. Pe3ynbrara9 pacserou 
TOJmrriH~ nReHKB XOpOWO COrAaCyEOTCK C AMCKWHMIICK 3KCnepuMeHTaRbHbIMR naHHblMu. BO BXOAHOM 

yVacTKe H B6An3n c~060~moii noBepwocTe TeYeHtie onpeAen5tAocb HHepnHeii, a npn 6OAbmnx paAnycaX 

a na yracTrax, npwneraronnix K aucry - nenTp06emHoii ctinok BpameHue Kbrwmuro cyqecrsemroe 

ysenwreaue K03@@ruaetrra rennonepetroca. 


